
(Extinguish fire) 

(Rescue victim) 

(Our of range) 

(MED in fire) 

Motivating Example: A wildfire scenario

Specifications as Hyperproperties

• Hyperproperties characterize requirements over sets of execution 
traces, allowing the specification of behaviors of multi-agent.

Problem Statement

HypRL Architecture

Multi-Objective Multi-Agent

How to shape 
Optimal Reward Functions?

a b c

d e f

g h i

        a – b – c – f – i 
         a – d – a – d – g – h – e – f 

Our Solutions to the Main Challenges

HypRL: Reinforcement Learning of Control Policies 
for Hyperproperties

Tzu-Han Hsu*, Arshia Rafieioskouei*, Borzoo Bonakdarpour    
Michigan State University

Paper

R1(Extinguish fire) = +50

R1(Rescue victim) = +10

R1(Our of range) = -100

R1(MED in fire) = -100

Research Question

A possible control policy with reward function R1

An optimal control policy with reward function R2

a b c

d e f

g h i

        a – d – e – f – i – f – c 
        a – d – g – d – e – f 

• We use hyperproperties, expressed in the temporal logic HyperLTL, 
to achieve specification-guided RL for multi-agent w.r.t multi-
objective and relational constraints.

a HyperLTL formula ' = Q1⌧1. . . .Qn⌧n.  , denoted by T = hT⌧iii2{1,...,|Vars(')|}, is a tuple of
sets of traces, where we have one set T⌧i per trace variable ⌧i, denoting the set of traces that can be
assigned to ⌧i. Let D⇡i be the distribution over a set of paths induced by a policy ⇡i, and we write
Z⌧i ⇠ D⇡i to denote a set of paths Z⌧i sampled from D⇡i , such that ⇡i is the policy associated with
the trace variable ⌧i, for each i 2 {1, . . . , |Vars(')|} (each trace variable ranges over the possible
behaviors of an agent). We also define a family of sampled sets S = hZ⌧i ⇠ D⇡iii2{1,...,|Vars(')|}.
That is, for each ⌧i in Vars('), T⌧i = Traces(Z⌧i ⇠ D⇡i) is the set of traces that ⌧i can range over,
which comes from the sampled paths from the associated policy ⇡i. Abusing notation, we write
T = Traces(S) as the tuple of sets of sampled traces. The satisfaction relation |= maps a formula '
to a model (T ,⇧, i), where i 2 Z�0 indicates the current evaluation position. Formally:
(T ,⇧, 0) |= 9⌧.  iff there is a t 2 T⌧ , such that (T ,⇧[⌧ ! t], 0) |=  

(T ,⇧, 0) |= 8⌧.  iff for all t 2 T⌧ , such that (T ,⇧[⌧ ! t], 0) |=  

(T ,⇧, i) |= p⌧ iff p 2 ⇧(⌧)(i)
(T ,⇧, i) |= ¬ iff (T ,⇧, i) 6|=  

(T ,⇧, i) |=  1 _  2 iff (T ,⇧, i) |=  1 or (T ,⇧, i) |=  2

(T ,⇧, i) |=  iff (T ,⇧, i+ 1) |=  and for all t 2 ⇧.|t| � i+ 1
(T ,⇧, i) |=  1 U  2 iff there exists j � i with j < mint2⇧ |t |, such that (T ,⇧, j) |=  2

and for all k 2 [i, j), (T ,⇧, k) |=  1.

We say that an interpretation T satisfies a HyperLTL formula ', written as T |= ', if (T ,⇧;, 0) |= '.
Likewise, a family of samples S (induced by each ⇡⌧i associated with each ⌧i 2 Vars(')), satisfies a
sentence ' if hTraces(Z⌧i ⇠ D⇡i)ii2{1,...,|Vars(')|} |= '.
Example. The following HyperLTL formula captures the objectives and constraints of our mo-
tivating example described in Figure 1, where ⌧1 is the path for FF and ⌧2 is the path for Med:

Specification : 'Rescue , 8⌧1.9⌧2.( fire ^  save ^  dist ^  safe)

O1 :  fire , (i⌧1) ^ (f ⌧1) ^ (c⌧1) C1 :  dist , (|Location⌧1 � Location⌧2 | < 3)

O2 :  save , (g⌧2) ^ (f ⌧2) C2 :  safe , (¬i⌧2 U i⌧1) ^ (¬f ⌧2 U f ⌧1) ^ (¬c⌧2 U c⌧1)

For instance, the dependency constraint C2 for “Med cannot enter any fire zone until FF extinguished
the fire in that zone” is expressed using the conjunction of temporal until operators. Notice that
'Rescue features 89 quantifier alternation, which increases the complexity of reasoning about hy-
perproperties [8]. We emphasize that most RL approaches assume purely universal forms (i.e., 8⇤),
which cannot capture agent dependencies and often yield sub-optimal solutions. For instance, if FF
ignores that Med must wait until the fire is extinguished to rescue a victim, FF may follow its own
optimal path that causes unnecessary delay for Med (see Figure 1c).

4 Problem Statement
Let us use ? to denote optimality (e.g., ⇡? denotes an optimal policy). The following optimization
problem formulates policy synthesis as a learning problem.

Given an MDP M with unknown transitions and a HyperLTL formula ' of the form
Q1⌧1. . . .Qn⌧n.  , our goal is to identify a tuple of n policies h⇡?

1 , . . . ,⇡
?
ni, such that:

h⇡?
i ii2{1,...,n} 2


argmax

h⇡ii
P
h
hTraces(Z⌧i ⇠ D⇡i)i |= '

i�

i2{1,...,n}

where D⇡1 , . . . ,D⇡n are the distributions over set of paths generated by policy spaces
⇡1, . . . ,⇡n. That is, h⇡?

1 , . . . ,⇡
?
ni maximizes the probability P such that the generated tuple

of sets of traces hTraces(Z⌧1 ⇠ D⇡1), . . . ,Traces(Z⌧n ⇠ D⇡n)i from M satisfies '.

Example. Consider the MDP in Figure 2 and the following HyperLTL formula:

'exp , 8⌧1.9⌧2.
⇣

i⌧1 ^ dist(hx, yi⌧1 , hx, yi⌧2) < 3
⌘

Suppose agent FF with ⇡1 draws samples Z⌧1 = {⇣1FF, ⇣
2
FF} from the MDP:

⇣
1
FF : h2, 0i

| {z }
a

R! h2, 1i
| {z }

b

R! h2, 2i
| {z }

c

U! h1, 2i
| {z }

f

L! h0, 2i
| {z }

i

⇣
2
FF : h2, 0i

| {z }
a

R! h2, 1i
| {z }

b

R! h1, 1i
| {z }

e

L! h0, 1i
| {z }

h

U! h0, 2i
| {z }

i

4

a HyperLTL formula ' = Q1⌧1. . . .Qn⌧n.  , denoted by T = hT⌧iii2{1,...,|Vars(')|}, is a tuple of
sets of traces, where we have one set T⌧i per trace variable ⌧i, denoting the set of traces that can be
assigned to ⌧i. Let D⇡i be the distribution over a set of paths induced by a policy ⇡i, and we write
Z⌧i ⇠ D⇡i to denote a set of paths Z⌧i sampled from D⇡i , such that ⇡i is the policy associated with
the trace variable ⌧i, for each i 2 {1, . . . , |Vars(')|} (each trace variable ranges over the possible
behaviors of an agent). We also define a family of sampled sets S = hZ⌧i ⇠ D⇡iii2{1,...,|Vars(')|}.
That is, for each ⌧i in Vars('), T⌧i = Traces(Z⌧i ⇠ D⇡i) is the set of traces that ⌧i can range over,
which comes from the sampled paths from the associated policy ⇡i. Abusing notation, we write
T = Traces(S) as the tuple of sets of sampled traces. The satisfaction relation |= maps a formula '
to a model (T ,⇧, i), where i 2 Z�0 indicates the current evaluation position. Formally:
(T ,⇧, 0) |= 9⌧.  iff there is a t 2 T⌧ , such that (T ,⇧[⌧ ! t], 0) |=  

(T ,⇧, 0) |= 8⌧.  iff for all t 2 T⌧ , such that (T ,⇧[⌧ ! t], 0) |=  

(T ,⇧, i) |= p⌧ iff p 2 ⇧(⌧)(i)
(T ,⇧, i) |= ¬ iff (T ,⇧, i) 6|=  

(T ,⇧, i) |=  1 _  2 iff (T ,⇧, i) |=  1 or (T ,⇧, i) |=  2

(T ,⇧, i) |=  iff (T ,⇧, i+ 1) |=  and for all t 2 ⇧.|t| � i+ 1
(T ,⇧, i) |=  1 U  2 iff there exists j � i with j < mint2⇧ |t |, such that (T ,⇧, j) |=  2

and for all k 2 [i, j), (T ,⇧, k) |=  1.

We say that an interpretation T satisfies a HyperLTL formula ', written as T |= ', if (T ,⇧;, 0) |= '.
Likewise, a family of samples S (induced by each ⇡⌧i associated with each ⌧i 2 Vars(')), satisfies a
sentence ' if hTraces(Z⌧i ⇠ D⇡i)ii2{1,...,|Vars(')|} |= '.
Example. The following HyperLTL formula captures the objectives and constraints of our mo-
tivating example described in Figure 1, where ⌧1 is the path for FF and ⌧2 is the path for Med:

Specification : 'Rescue , 8⌧1.9⌧2.( fire ^  save ^  dist ^  safe)

O1 :  fire , (i⌧1) ^ (f ⌧1) ^ (c⌧1) C1 :  dist , (|Location⌧1 � Location⌧2 | < 3)

O2 :  save , (g⌧2) ^ (f ⌧2) C2 :  safe , (¬i⌧2 U i⌧1) ^ (¬f ⌧2 U f ⌧1) ^ (¬c⌧2 U c⌧1)

For instance, the dependency constraint C2 for “Med cannot enter any fire zone until FF extinguished
the fire in that zone” is expressed using the conjunction of temporal until operators. Notice that
'Rescue features 89 quantifier alternation, which increases the complexity of reasoning about hy-
perproperties [8]. We emphasize that most RL approaches assume purely universal forms (i.e., 8⇤),
which cannot capture agent dependencies and often yield sub-optimal solutions. For instance, if FF
ignores that Med must wait until the fire is extinguished to rescue a victim, FF may follow its own
optimal path that causes unnecessary delay for Med (see Figure 1c).

4 Problem Statement
Let us use ? to denote optimality (e.g., ⇡? denotes an optimal policy). The following optimization
problem formulates policy synthesis as a learning problem.

Given an MDP M with unknown transitions and a HyperLTL formula ' of the form
Q1⌧1. . . .Qn⌧n.  , our goal is to identify a tuple of n policies h⇡?

1 , . . . ,⇡
?
ni, such that:

h⇡?
i ii2{1,...,n} 2


argmax

h⇡ii
P
h
hTraces(Z⌧i ⇠ D⇡i)i |= '

i�

i2{1,...,n}

where D⇡1 , . . . ,D⇡n are the distributions over set of paths generated by policy spaces
⇡1, . . . ,⇡n. That is, h⇡?

1 , . . . ,⇡
?
ni maximizes the probability P such that the generated tuple

of sets of traces hTraces(Z⌧1 ⇠ D⇡1), . . . ,Traces(Z⌧n ⇠ D⇡n)i from M satisfies '.

Example. Consider the MDP in Figure 2 and the following HyperLTL formula:

'exp , 8⌧1.9⌧2.
⇣

i⌧1 ^ dist(hx, yi⌧1 , hx, yi⌧2) < 3
⌘

Suppose agent FF with ⇡1 draws samples Z⌧1 = {⇣1FF, ⇣
2
FF} from the MDP:

⇣
1
FF : h2, 0i

| {z }
a

R! h2, 1i
| {z }

b

R! h2, 2i
| {z }

c

U! h1, 2i
| {z }

f

L! h0, 2i
| {z }

i

⇣
2
FF : h2, 0i

| {z }
a

R! h2, 1i
| {z }

b

R! h1, 1i
| {z }

e

L! h0, 1i
| {z }

h

U! h0, 2i
| {z }

i

4

a HyperLTL formula ' = Q1⌧1. . . .Qn⌧n.  , denoted by T = hT⌧iii2{1,...,|Vars(')|}, is a tuple of
sets of traces, where we have one set T⌧i per trace variable ⌧i, denoting the set of traces that can be
assigned to ⌧i. Let D⇡i be the distribution over a set of paths induced by a policy ⇡i, and we write
Z⌧i ⇠ D⇡i to denote a set of paths Z⌧i sampled from D⇡i , such that ⇡i is the policy associated with
the trace variable ⌧i, for each i 2 {1, . . . , |Vars(')|} (each trace variable ranges over the possible
behaviors of an agent). We also define a family of sampled sets S = hZ⌧i ⇠ D⇡iii2{1,...,|Vars(')|}.
That is, for each ⌧i in Vars('), T⌧i = Traces(Z⌧i ⇠ D⇡i) is the set of traces that ⌧i can range over,
which comes from the sampled paths from the associated policy ⇡i. Abusing notation, we write
T = Traces(S) as the tuple of sets of sampled traces. The satisfaction relation |= maps a formula '
to a model (T ,⇧, i), where i 2 Z�0 indicates the current evaluation position. Formally:
(T ,⇧, 0) |= 9⌧.  iff there is a t 2 T⌧ , such that (T ,⇧[⌧ ! t], 0) |=  

(T ,⇧, 0) |= 8⌧.  iff for all t 2 T⌧ , such that (T ,⇧[⌧ ! t], 0) |=  

(T ,⇧, i) |= p⌧ iff p 2 ⇧(⌧)(i)
(T ,⇧, i) |= ¬ iff (T ,⇧, i) 6|=  

(T ,⇧, i) |=  1 _  2 iff (T ,⇧, i) |=  1 or (T ,⇧, i) |=  2

(T ,⇧, i) |=  iff (T ,⇧, i+ 1) |=  and for all t 2 ⇧.|t| � i+ 1
(T ,⇧, i) |=  1 U  2 iff there exists j � i with j < mint2⇧ |t |, such that (T ,⇧, j) |=  2

and for all k 2 [i, j), (T ,⇧, k) |=  1.

We say that an interpretation T satisfies a HyperLTL formula ', written as T |= ', if (T ,⇧;, 0) |= '.
Likewise, a family of samples S (induced by each ⇡⌧i associated with each ⌧i 2 Vars(')), satisfies a
sentence ' if hTraces(Z⌧i ⇠ D⇡i)ii2{1,...,|Vars(')|} |= '.
Example. The following HyperLTL formula captures the objectives and constraints of our mo-
tivating example described in Figure 1, where ⌧1 is the path for FF and ⌧2 is the path for Med:

Specification : 'Rescue , 8⌧1.9⌧2.( fire ^  save ^  dist ^  safe)

O1 :  fire , (i⌧1) ^ (f ⌧1) ^ (c⌧1) C1 :  dist , (|Location⌧1 � Location⌧2 | < 3)

O2 :  save , (g⌧2) ^ (f ⌧2) C2 :  safe , (¬i⌧2 U i⌧1) ^ (¬f ⌧2 U f ⌧1) ^ (¬c⌧2 U c⌧1)

For instance, the dependency constraint C2 for “Med cannot enter any fire zone until FF extinguished
the fire in that zone” is expressed using the conjunction of temporal until operators. Notice that
'Rescue features 89 quantifier alternation, which increases the complexity of reasoning about hy-
perproperties [8]. We emphasize that most RL approaches assume purely universal forms (i.e., 8⇤),
which cannot capture agent dependencies and often yield sub-optimal solutions. For instance, if FF
ignores that Med must wait until the fire is extinguished to rescue a victim, FF may follow its own
optimal path that causes unnecessary delay for Med (see Figure 1c).

4 Problem Statement
Let us use ? to denote optimality (e.g., ⇡? denotes an optimal policy). The following optimization
problem formulates policy synthesis as a learning problem.

Given an MDP M with unknown transitions and a HyperLTL formula ' of the form
Q1⌧1. . . .Qn⌧n.  , our goal is to identify a tuple of n policies h⇡?

1 , . . . ,⇡
?
ni, such that:

h⇡?
i ii2{1,...,n} 2


argmax

h⇡ii
P
h
hTraces(Z⌧i ⇠ D⇡i)i |= '

i�

i2{1,...,n}

where D⇡1 , . . . ,D⇡n are the distributions over set of paths generated by policy spaces
⇡1, . . . ,⇡n. That is, h⇡?

1 , . . . ,⇡
?
ni maximizes the probability P such that the generated tuple

of sets of traces hTraces(Z⌧1 ⇠ D⇡1), . . . ,Traces(Z⌧n ⇠ D⇡n)i from M satisfies '.

Example. Consider the MDP in Figure 2 and the following HyperLTL formula:

'exp , 8⌧1.9⌧2.
⇣

i⌧1 ^ dist(hx, yi⌧1 , hx, yi⌧2) < 3
⌘

Suppose agent FF with ⇡1 draws samples Z⌧1 = {⇣1FF, ⇣
2
FF} from the MDP:

⇣
1
FF : h2, 0i

| {z }
a

R! h2, 1i
| {z }

b

R! h2, 2i
| {z }

c

U! h1, 2i
| {z }

f

L! h0, 2i
| {z }

i

⇣
2
FF : h2, 0i

| {z }
a

R! h2, 1i
| {z }

b

R! h1, 1i
| {z }

e

L! h0, 1i
| {z }

h

U! h0, 2i
| {z }

i

4

R2(Extinguish fire) = +10

R2(Rescue victim) = +50

R2(Our of range) = -100

R2(MED in fire) = -100

The HyperLTL specification for the wildfire scenario:

a HyperLTL formula ' = Q1⌧1. . . .Qn⌧n.  , denoted by T = hT⌧iii2{1,...,|Vars(')|}, is a tuple of
sets of traces, where we have one set T⌧i per trace variable ⌧i, denoting the set of traces that can be
assigned to ⌧i. Let D⇡i be the distribution over a set of paths induced by a policy ⇡i, and we write
Z⌧i ⇠ D⇡i to denote a set of paths Z⌧i sampled from D⇡i , such that ⇡i is the policy associated with
the trace variable ⌧i, for each i 2 {1, . . . , |Vars(')|} (each trace variable ranges over the possible
behaviors of an agent). We also define a family of sampled sets S = hZ⌧i ⇠ D⇡iii2{1,...,|Vars(')|}.
That is, for each ⌧i in Vars('), T⌧i = Traces(Z⌧i ⇠ D⇡i) is the set of traces that ⌧i can range over,
which comes from the sampled paths from the associated policy ⇡i. Abusing notation, we write
T = Traces(S) as the tuple of sets of sampled traces. The satisfaction relation |= maps a formula '
to a model (T ,⇧, i), where i 2 Z�0 indicates the current evaluation position. Formally:
(T ,⇧, 0) |= 9⌧.  iff there is a t 2 T⌧ , such that (T ,⇧[⌧ ! t], 0) |=  

(T ,⇧, 0) |= 8⌧.  iff for all t 2 T⌧ , such that (T ,⇧[⌧ ! t], 0) |=  

(T ,⇧, i) |= p⌧ iff p 2 ⇧(⌧)(i)
(T ,⇧, i) |= ¬ iff (T ,⇧, i) 6|=  

(T ,⇧, i) |=  1 _  2 iff (T ,⇧, i) |=  1 or (T ,⇧, i) |=  2

(T ,⇧, i) |=  iff (T ,⇧, i+ 1) |=  and for all t 2 ⇧.|t| � i+ 1
(T ,⇧, i) |=  1 U  2 iff there exists j � i with j < mint2⇧ |t |, such that (T ,⇧, j) |=  2

and for all k 2 [i, j), (T ,⇧, k) |=  1.

We say that an interpretation T satisfies a HyperLTL formula ', written as T |= ', if (T ,⇧;, 0) |= '.
Likewise, a family of samples S (induced by each ⇡⌧i associated with each ⌧i 2 Vars(')), satisfies a
sentence ' if hTraces(Z⌧i ⇠ D⇡i)ii2{1,...,|Vars(')|} |= '.
Example. The following HyperLTL formula captures the objectives and constraints of our mo-
tivating example described in Figure 1, where ⌧1 is the path for FF and ⌧2 is the path for Med:

Specification : 'Rescue , 8⌧1.9⌧2.( fire ^  save ^  dist ^  safe)

O1 :  fire , (i⌧1) ^ (f ⌧1) ^ (c⌧1) C1 :  dist , (|Location⌧1 � Location⌧2 | < 3)

O2 :  save , (g⌧2) ^ (f ⌧2) C2 :  safe , (¬i⌧2 U i⌧1) ^ (¬f ⌧2 U f ⌧1) ^ (¬c⌧2 U c⌧1)

For instance, the dependency constraint C2 for “Med cannot enter any fire zone until FF extinguished
the fire in that zone” is expressed using the conjunction of temporal until operators. Notice that
'Rescue features 89 quantifier alternation, which increases the complexity of reasoning about hy-
perproperties [8]. We emphasize that most RL approaches assume purely universal forms (i.e., 8⇤),
which cannot capture agent dependencies and often yield sub-optimal solutions. For instance, if FF
ignores that Med must wait until the fire is extinguished to rescue a victim, FF may follow its own
optimal path that causes unnecessary delay for Med (see Figure 1c).

4 Problem Statement
Let us use ? to denote optimality (e.g., ⇡? denotes an optimal policy). The following optimization
problem formulates policy synthesis as a learning problem.

Given an MDP M with unknown transitions and a HyperLTL formula ' of the form
Q1⌧1. . . .Qn⌧n.  , our goal is to identify a tuple of n policies h⇡?

1 , . . . ,⇡
?
ni, such that:

h⇡?
i ii2{1,...,n} 2


argmax

h⇡ii
P
h
hTraces(Z⌧i ⇠ D⇡i)i |= '

i�

i2{1,...,n}

where D⇡1 , . . . ,D⇡n are the distributions over set of paths generated by policy spaces
⇡1, . . . ,⇡n. That is, h⇡?

1 , . . . ,⇡
?
ni maximizes the probability P such that the generated tuple

of sets of traces hTraces(Z⌧1 ⇠ D⇡1), . . . ,Traces(Z⌧n ⇠ D⇡n)i from M satisfies '.

Example. Consider the MDP in Figure 2 and the following HyperLTL formula:

'exp , 8⌧1.9⌧2.
⇣

i⌧1 ^ dist(hx, yi⌧1 , hx, yi⌧2) < 3
⌘

Suppose agent FF with ⇡1 draws samples Z⌧1 = {⇣1FF, ⇣
2
FF} from the MDP:

⇣
1
FF : h2, 0i

| {z }
a

R! h2, 1i
| {z }

b

R! h2, 2i
| {z }

c

U! h1, 2i
| {z }

f

L! h0, 2i
| {z }

i

⇣
2
FF : h2, 0i

| {z }
a

R! h2, 1i
| {z }

b

R! h1, 1i
| {z }

e

L! h0, 1i
| {z }

h

U! h0, 2i
| {z }

i

4

(1) We apply Skolemization to resolve quantifier alternations in a HyperLTL formula.

(2) We define quantitative semantics by min-max to interpret temporal satisfaction.

(3) We inductively construct policies to handle dependencies among multi-agent.

Agent Med with policy ⇡2 draws Z⌧2 = {⇣1Med, ⇣
2
Med}:

⇣
1
Med : h2, 0i

| {z }
a

U! h1, 0i
| {z }

d

U! h0, 0i
| {z }

g

R! h1, 0i
| {z }

d

R! h1, 0i
| {z }

d

⇣
2
Med : h2, 0i

| {z }
a

U! h2, 1i
| {z }

b

L! h1, 1i
| {z }

e

R! h1, 2i
| {z }

f

L! h0, 2i
| {z }

i

Notice that, the number of samples can be more than two. We now calculate the probability of
satisfying ' using Z⌧1 and Z⌧2 (obtained by ⇡1 and ⇡2) as follows:

Traces(h{⇣1FF},Z⌧2i) |= 'exp Traces(h{⇣2FF},Z⌧2i) |= 'exp,

where ⇣2Med is the witness to ⌧2 (existentially quantified) for both satisfaction relations. Hence, given
Z1 and Z2, the probability of satisfying 'exp is evaluated as:

Ph⇡1,⇡2i

h
Traces(hZ⌧1 ,Z⌧2i) |= 'exp

i
= 1

Now, if 'exp had the form 88, the evaluation has to go over all combinations between Z⌧1 and Z⌧2 :

Traces(h{⇣1FF}, {⇣
1
Med}i) 6|= 'exp Traces(h{⇣1FF}, {⇣

2
Med}i) |= 'exp

Traces(h{⇣2FF}, {⇣
1
Med}i) 6|= 'exp Traces(h{⇣2FF}, {⇣

2
Med}i) |= 'exp

Thus, the satisfaction probability of 88 would be 0.5. This example demonstrates that the probability
of satisfying a HyperLTL formula crucially depends on its quantifier structure.

5 Algorithmic Details of HYPRL
To solve the problem formally stated in Section 3, our algorithm proceeds in the following three
steps. We first Skolemize ' [40] to eliminate quantifier alternations and simplify the learning task.
We then define quantitative semantics for HyperLTL, converting satisfaction checking into robustness
value optimization. Finally, we train a neural network using these robustness signals to learn optimal
policies that solve the original learning problem.

5.1 Step 1: HyperLTL Skolemization

Let a HyperLTL formula be of the form ' = Q1⌧1.Q2⌧2. . . .Qn.⌧n.  (⌧1, ⌧2, . . . , ⌧n), where
for 1  `  n, each Q` 2 {8, 9} quantifies a trace variable ⌧`, and  is a quantifier-free LTL
formula. We first Skolemize ', producing Skolem('), to eliminate quantifier alternations. We
define Q9 = {i | Qi = 9} and Q8 = {j | Qj = 8} as the sets of existential and universal quantifier
indices, respectively. For each i 2 Q9, we denote Q8

i = {j < i | Qj = 8} as the index set of all
universal quantifiers preceding Qi. A Skolem function for each i 2 Q9 is defined as fi : T |Q8

i | ! T ,

and reduces to a constant function when Q8
i = ;. A trace assignment ⇧ is consistent with fi, if

⇧(⌧ij ) 2 T for all j 2 Q8
i , and ⇧(⌧i) = fi

�
⇧(⌧i1),⇧(⌧i2), . . . ,⇧(⌧i|Q8

i |)
�

for all i 2 Q9, where
Q8

i = {i1 < i2 < · · · < i|Q8
i |}. If (T ,⇧, 0) |= ' for every trace assignment ⇧ consistent with

all fi, then each fi is said to witness the satisfaction of ' [43]. For the inner LTL formula  (i.e.,
obtaining Skolem( )), we replace each proposition p⌧i with pfi for all p 2 AP and i 2 Q9, thereby
instantiating variables of the existentially quantified paths via their Skolem witnesses. In general, a
Skolemized ' is of the following form:

Skolem(') = 9fi(⌧i1 , . . . , ⌧i|Q8i |
)

| {z }
for each i2Q9

. 8⌧j .
|{z}

for each j2Q8

Skolem( ) (1)

Based on this transformation, we re-write the problem statement from Section 3 as follows. We first
define the image of fi:

Img(fi) , {fi(ti1 , . . . , ti|Q8i |
) | tij 2 Traces(Z⌧ij

⇠ D⇡ij
), j 2 Q8

i }

That is, Img(fi) is the set of mapped traces (which ⌧ij for each i 2 Q9 ranges over) from all possible
preceding 8-quantified ⌧ij , where each tij is from its own sampled trace set Z⌧ij

. Now, let us use
./ as a notation to ensure the collection of trace sets are ordered w.r.t. their path indices. Given
two tuples of sets of traces T1 and T2, we define T1 ./ T2 , hTraces(Z⌧x)ix2{1···n}, where each

5

⇢
�
Tr(⇣[`:k]), 

�
= ⇢min if Tr(⇣[`:..]) = ✏ and ⇢

�
Tr(⇣[`:k]), 

�
otherwise.

⇢
�
Tr(⇣[`:k]), true

�
= ⇢max

⇢
�
Tr(⇣[`:k]), f

�
L(s`) < c

��
= c � f

�
L(s`)

�

⇢
�
Tr(⇣[`:k]),¬ 

�
= �⇢

�
Tr(⇣[`:k]), 

�

⇢
�
Tr(⇣[`:k]),  

�
= ⇢

�
Tr(⇣[`+1:k]), 

�
if (k > `).

⇢
�
Tr(⇣[`:k]),  

�
= min

i2[`,k)
⇢
�
Tr(⇣[i:k]), 

�

⇢
�
Tr(⇣[`:k]),  

�
= max

i2[`,k)
⇢
�
Tr(⇣[i:k]) 

�

⇢
�
Tr(⇣[`:k]), 1 ^  2

�
= min

�
⇢
�
Tr(⇣[`:k]), 1

�
⇢
�
Tr(⇣[`:k]), 2

��

⇢
�
Tr(⇣[`:k]), 1 _  2

�
= max

�
⇢
�
Tr(⇣[`:k]), 1

�
⇢
�
Tr(⇣[`:k]), 2

��

⇢
�
Tr(⇣[`:k]), 1 U  2

�
= max

i2[`,k)

⇣
min

⇣
⇢
�
Tr(⇣[i:k]), 2

�
, min
j2[`,i)

⇢
�
Tr(⇣[j:i]), 1

�⌘⌘

Figure 3: Quantitative semantics for LTL.

Traces(Z⌧x) is either in T1 or T2 (and not both). Given an MDP M and a HyperLTL specification '
of the formQ1⌧1.Q2⌧2. . . .Qn⌧n.  , our goal is to compute (1) a tuple of Skolem witnesses hfiii2Q9 ,
and (2) a tuple of policies h⇡?

j ij2Q8 , such that:

h⇡?
j ij2Q8 2


argmax

h⇡ji
P
h
hImg(fi)i ./ hTraces(Z⌧j ⇠ D⇡j )i |= Skolem(')

i�

i2Q9,j2Q8

That is, the tuple of policies h⇡?
j i maximizes the probability that the ordered collection of (1) the

generated traces of all universal quantifiers hTraces(Z⌧j ⇠ D⇡j )ij2Q8 and (2) the sets of mapped
traces (i.e., the image) of each Skolem witness for all existential quantifiers hImg(fi)ii2Q9 together
satisfies Skolem('). Notice that in the updated problem statement, we compute policies only for
universally quantified traces, while Skolem functions are learned for existentially quantified traces to
witness the optimality.

5.2 Step 2: Policy Learning with Quantitative Semantics

To transform the satisfaction checking problem (i.e., determining |=) into an optimization task, we
define quantitative semantics for HyperLTL, extended from [32]. In particular, we evaluate the
Skolemized HyperLTL formula Skolem(') over tuples of sampled paths h⇣1, ⇣2, . . . , ⇣ni from M.

Robustness for a Single Trace. Let R be the set of real numbers and  the set of all LTL formulas.
We define a valuation function f : 2AP ! R that assigns a real value to a set of atomic propositions,
provided as part of the input. Given a state s 2 S of an MDP M, the quantitative semantics are
defined over predicates in the form of f

�
L(s)

�
< c, where c is a user-specified threshold. Next, we

define a robustness function ⇢ : Traces(Z⇤)⇥ ! R that assigns a robustness value to a finite trace
for an LTL formula. Intuitively, the robustness value evaluates “how far” the given finite trace is from
satisfying  . The complete quantitative semantics is shown in Figure 3. We use constants ⇢max and
⇢min for the maximum and minimum robustness values, respectively. Given a trace, a higher ⇢ value
implies the trace has higher robustness to satisfy  , and a lower ⇢ value means the trace is less likely
to satisfy  (e.g., a potential violation).

Formally, given an LTL formula  and an MDP M, a path ⇣ with a higher robustness value indicates
that it has higher probability to satisfy  . The optimization task of seeking a single policy ⇡? is:

⇡
? 2 argmax

⇡
P

⇣⇠D⇡

h
⇢
�
Tr(⇣[0:k]), 

� ?! ⇢max

i

Here, for simplicity, we use the notation ?! to represent convergence. That is, ⇡? maximizes the
probability of satisfying  over the distribution of paths generated by policy ⇡.
Robustness for a Tuple of Traces. To evaluate the robustness value over multiple traces, we first
define a zip function that pointwise bundles a tuple of traces. Given a tuple of finite traces ht1, . . . , tni,
we derive a zipped trace zip(ht1, . . . , tni) and for all i � 0, zip(ht1, . . . , tni)(i) , ht1(i), . . . , tn(i)i.
Given an LTL formula, a tuple of paths h⇣1, ⇣2, . . . , ⇣ni has higher probability of satisfying  if the

6

Formula instrumentation

Agents

h⇡?
1 · · ·⇡?

ni

h⇣1 · · · ⇣ni

Environment

SkolemizationHyperLTL '

MDP
M

Robustness
function

⇢
�
h⇣1 · · · ⇣ni,'

�

Robustness
values

Next episode

Samples

Skolem(')

Figure 4: Overview of HYPRL.

Table 1: HyperLTL specifications of case studies.

(SRL) 8⌧1.9⌧2. hx⌧1 , y⌧1i 6= hx⌧2 , y⌧2i ^ hx⌧1 , y⌧1i = hxG1, yG1i^
hx⌧2 , y⌧2i = hxG2, yG2i

(DST) 8⌧1.9⌧2. (T1⌧1 ^ (T2⌧1 ^ (T3⌧1) . . . )) ^
(step⌧2

< �) ^ (|pos⌧1 � pos⌧2 | < 1)

(PCP)

8⌧1.9⌧2.  SemiMatch⌧1 U
�
 Extend⌧1,⌧2

^
V

p2AP
(ptop⌧2

$ pbot⌧2
)
�

 SemiMatch⌧1 ,
h V
p2AP

(ptop⌧1
$ pbot⌧1

)
i
U (#top⌧1

�#bot⌧1
)

'Extend⌧1,⌧2
,

h V
p2AP

�
(ptop⌧1

$ ptop⌧2
) ^ (pbot⌧1 $ pbot⌧2

)
�i

U
�
(#top⌧1

_#bot⌧1
) ^ (¬#top⌧2

^ ¬#bot⌧2
)
�

The expected reward E(sk, ak) follows the classic Bellman formulation, combining immediate reward
and future reward based on some discount factor � (see Appendix B for details). Intuitively, E(sk, ak)
quantifies the long-term utility of taking action ak at state sk. Finally, for any arbitrary state s and
action a, the Bellman Equation then defines the Q-value recursively for each (s, a) 2 S ⇥A, denoted
as QNN (s, a):

QNN (s, a) ,
X

s02S

P(s, a, s 0)


R(s, a) + �

X

a02A

NN (a 0 | s 0) E(s 0, a 0)

�
,

where NN (a 0 | s 0) indicates that NN takes action a 0 on state s 0. Consequently, the optimal
action-value function for each (s, a) is:

QNN?

(s, a) , max
NN

QNN (s, a) (3)

Intuitively, QNN?

(s, a) captures the maximum expected reward achievable from a state s by taking
action a . We remark that, our framework samples all paths for each quantifier simultaneously.
That is, the learned neural network NN ? induces a set of n functions {NN ?

1, . . . ,NN ?
n}, where

n = |Vars(')|, and for all 1  `  n, NN ?
` maps a state to an optimal actions for a path ⇣`.

Constructing Policies. Based on the learned NN ?, we now construct the tuple of policies h⇡?
i ii2Q9

and h⇡?
j ij2Q8 that solves (2) for each k-step ranging over the sample size as follows.
• For each j 2 Q8, we inductively construct the policies:

⇡
?
j (⇣j [0:k]) , NN ?

j (sk)

• For each i 2 Q9, we construct a Skolem witness as follows:

⇡
?
i (⇣i[0:k]) , NN ?

i

⇣
fi
�
Tr(⇣i1 [0:k]), . . . ,Tr(⇣i|Q8i |[0:k]

)
�⌘

That is, the optimal policy for a finite prefix ⇣i with i 2 Q9 depends on the optimal actions taken along
the preceding universal paths ⇣i1 , . . . , ⇣i|Q8i |

, illustrating how our framework captures the dependency
of an existential path on the universally quantified ones. To this end, from the learned neural network
NN ?, we succesfully derive two tuples h⇡?

i ii2Q9 and h⇡?
j ij2Q8 for Equation (2).

Theorem 2 Given an MDP M and a HyperLTL formula ', the optimal neural network
function NN ? derives a tuple of Skolem function witnesses hfiii2Q9 and a tuple of optimal
policies h⇡?

j ij2Q8 that optimize the satisfaction of Skolem(').

Theorem 2 gives the premise of Theorem 1, which, in turn, solves the original problem stated
in Section 3 (detailed proof in Appendix A).

6 Implementation and Experiments
HYPRL is fully implemented (see Figure 4). Given a HyperLTL formula ' with n quantifiers, HYPRL
first constructs its Skolemized form Skolem('), as prescribed in Section 5.1. Next, at each step

8

Formula instrumentation

Agents

h⇡?
1 · · ·⇡?

ni

h⇣1 · · · ⇣ni

Environment

SkolemizationHyperLTL '

MDP
M

Robustness
function

⇢
�
h⇣1 · · · ⇣ni,'

�

Robustness
values

Next episode

Samples

Skolem(')

Figure 4: Overview of HYPRL.

Table 1: HyperLTL specifications of case studies.

(SRL) 8⌧1.9⌧2. hx⌧1 , y⌧1i 6= hx⌧2 , y⌧2i ^ hx⌧1 , y⌧1i = hxG1, yG1i^
hx⌧2 , y⌧2i = hxG2, yG2i

(DST) 8⌧1.9⌧2. (T1⌧1 ^ (T2⌧1 ^ (T3⌧1) . . . )) ^
(step⌧2

< �) ^ (|pos⌧1 � pos⌧2 | < 1)

(PCP)

8⌧1.9⌧2.  SemiMatch⌧1 U
�
 Extend⌧1,⌧2

^
V

p2AP
(ptop⌧2

$ pbot⌧2
)
�

 SemiMatch⌧1 ,
h V
p2AP

(ptop⌧1
$ pbot⌧1

)
i
U (#top⌧1

�#bot⌧1
)

'Extend⌧1,⌧2
,

h V
p2AP

�
(ptop⌧1

$ ptop⌧2
) ^ (pbot⌧1 $ pbot⌧2

)
�i

U
�
(#top⌧1

_#bot⌧1
) ^ (¬#top⌧2

^ ¬#bot⌧2
)
�

The expected reward E(sk, ak) follows the classic Bellman formulation, combining immediate reward
and future reward based on some discount factor � (see Appendix B for details). Intuitively, E(sk, ak)
quantifies the long-term utility of taking action ak at state sk. Finally, for any arbitrary state s and
action a, the Bellman Equation then defines the Q-value recursively for each (s, a) 2 S ⇥A, denoted
as QNN (s, a):

QNN (s, a) ,
X

s02S

P(s, a, s 0)


R(s, a) + �

X

a02A

NN (a 0 | s 0) E(s 0, a 0)

�
,

where NN (a 0 | s 0) indicates that NN takes action a 0 on state s 0. Consequently, the optimal
action-value function for each (s, a) is:

QNN?

(s, a) , max
NN

QNN (s, a) (3)

Intuitively, QNN?

(s, a) captures the maximum expected reward achievable from a state s by taking
action a . We remark that, our framework samples all paths for each quantifier simultaneously.
That is, the learned neural network NN ? induces a set of n functions {NN ?

1, . . . ,NN ?
n}, where

n = |Vars(')|, and for all 1  `  n, NN ?
` maps a state to an optimal actions for a path ⇣`.

Constructing Policies. Based on the learned NN ?, we now construct the tuple of policies h⇡?
i ii2Q9

and h⇡?
j ij2Q8 that solves (2) for each k-step ranging over the sample size as follows.
• For each j 2 Q8, we inductively construct the policies:

⇡
?
j (⇣j [0:k]) , NN ?

j (sk)

• For each i 2 Q9, we construct a Skolem witness as follows:

⇡
?
i (⇣i[0:k]) , NN ?

i

⇣
fi
�
Tr(⇣i1 [0:k]), . . . ,Tr(⇣i|Q8i |[0:k]

)
�⌘

That is, the optimal policy for a finite prefix ⇣i with i 2 Q9 depends on the optimal actions taken along
the preceding universal paths ⇣i1 , . . . , ⇣i|Q8i |

, illustrating how our framework captures the dependency
of an existential path on the universally quantified ones. To this end, from the learned neural network
NN ?, we succesfully derive two tuples h⇡?

i ii2Q9 and h⇡?
j ij2Q8 for Equation (2).

Theorem 2 Given an MDP M and a HyperLTL formula ', the optimal neural network
function NN ? derives a tuple of Skolem function witnesses hfiii2Q9 and a tuple of optimal
policies h⇡?

j ij2Q8 that optimize the satisfaction of Skolem(').

Theorem 2 gives the premise of Theorem 1, which, in turn, solves the original problem stated
in Section 3 (detailed proof in Appendix A).

6 Implementation and Experiments
HYPRL is fully implemented (see Figure 4). Given a HyperLTL formula ' with n quantifiers, HYPRL
first constructs its Skolemized form Skolem('), as prescribed in Section 5.1. Next, at each step

8

Formula instrumentation

Agents

h⇡?
1 · · ·⇡?

ni

h⇣1 · · · ⇣ni

Environment

SkolemizationHyperLTL '

MDP
M

Robustness
function

⇢
�
h⇣1 · · · ⇣ni,'

�

Robustness
values

Next episode

Samples

Skolem(')

Figure 4: Overview of HYPRL.

Table 1: HyperLTL specifications of case studies.

(SRL) 8⌧1.9⌧2. hx⌧1 , y⌧1i 6= hx⌧2 , y⌧2i ^ hx⌧1 , y⌧1i = hxG1, yG1i^
hx⌧2 , y⌧2i = hxG2, yG2i

(DST) 8⌧1.9⌧2. (T1⌧1 ^ (T2⌧1 ^ (T3⌧1) . . . )) ^
(step⌧2

< �) ^ (|pos⌧1 � pos⌧2 | < 1)

(PCP)

8⌧1.9⌧2.  SemiMatch⌧1 U
�
 Extend⌧1,⌧2

^
V

p2AP
(ptop⌧2

$ pbot⌧2
)
�

 SemiMatch⌧1 ,
h V
p2AP

(ptop⌧1
$ pbot⌧1

)
i
U (#top⌧1

�#bot⌧1
)

'Extend⌧1,⌧2
,

h V
p2AP

�
(ptop⌧1

$ ptop⌧2
) ^ (pbot⌧1 $ pbot⌧2

)
�i

U
�
(#top⌧1

_#bot⌧1
) ^ (¬#top⌧2

^ ¬#bot⌧2
)
�

The expected reward E(sk, ak) follows the classic Bellman formulation, combining immediate reward
and future reward based on some discount factor � (see Appendix B for details). Intuitively, E(sk, ak)
quantifies the long-term utility of taking action ak at state sk. Finally, for any arbitrary state s and
action a, the Bellman Equation then defines the Q-value recursively for each (s, a) 2 S ⇥A, denoted
as QNN (s, a):

QNN (s, a) ,
X

s02S

P(s, a, s 0)


R(s, a) + �

X

a02A

NN (a 0 | s 0) E(s 0, a 0)

�
,

where NN (a 0 | s 0) indicates that NN takes action a 0 on state s 0. Consequently, the optimal
action-value function for each (s, a) is:

QNN?

(s, a) , max
NN

QNN (s, a) (3)

Intuitively, QNN?

(s, a) captures the maximum expected reward achievable from a state s by taking
action a . We remark that, our framework samples all paths for each quantifier simultaneously.
That is, the learned neural network NN ? induces a set of n functions {NN ?

1, . . . ,NN ?
n}, where

n = |Vars(')|, and for all 1  `  n, NN ?
` maps a state to an optimal actions for a path ⇣`.

Constructing Policies. Based on the learned NN ?, we now construct the tuple of policies h⇡?
i ii2Q9

and h⇡?
j ij2Q8 that solves (2) for each k-step ranging over the sample size as follows.
• For each j 2 Q8, we inductively construct the policies:

⇡
?
j (⇣j [0:k]) , NN ?

j (sk)

• For each i 2 Q9, we construct a Skolem witness as follows:

⇡
?
i (⇣i[0:k]) , NN ?

i

⇣
fi
�
Tr(⇣i1 [0:k]), . . . ,Tr(⇣i|Q8i |[0:k]

)
�⌘

That is, the optimal policy for a finite prefix ⇣i with i 2 Q9 depends on the optimal actions taken along
the preceding universal paths ⇣i1 , . . . , ⇣i|Q8i |

, illustrating how our framework captures the dependency
of an existential path on the universally quantified ones. To this end, from the learned neural network
NN ?, we succesfully derive two tuples h⇡?

i ii2Q9 and h⇡?
j ij2Q8 for Equation (2).

Theorem 2 Given an MDP M and a HyperLTL formula ', the optimal neural network
function NN ? derives a tuple of Skolem function witnesses hfiii2Q9 and a tuple of optimal
policies h⇡?

j ij2Q8 that optimize the satisfaction of Skolem(').

Theorem 2 gives the premise of Theorem 1, which, in turn, solves the original problem stated
in Section 3 (detailed proof in Appendix A).

6 Implementation and Experiments
HYPRL is fully implemented (see Figure 4). Given a HyperLTL formula ' with n quantifiers, HYPRL
first constructs its Skolemized form Skolem('), as prescribed in Section 5.1. Next, at each step

8

Formula instrumentation

Agents

h⇡?
1 · · ·⇡?

ni

h⇣1 · · · ⇣ni

Environment

SkolemizationHyperLTL '

MDP
M

Robustness
function

⇢
�
h⇣1 · · · ⇣ni,'

�

Robustness
values

Next episode

Samples

Skolem(')

Figure 4: Overview of HYPRL.

Table 1: HyperLTL specifications of case studies.

(SRL) 8⌧1.9⌧2. hx⌧1 , y⌧1i 6= hx⌧2 , y⌧2i ^ hx⌧1 , y⌧1i = hxG1, yG1i^
hx⌧2 , y⌧2i = hxG2, yG2i

(DST) 8⌧1.9⌧2. (T1⌧1 ^ (T2⌧1 ^ (T3⌧1) . . . )) ^
(step⌧2

< �) ^ (|pos⌧1 � pos⌧2 | < 1)

(PCP)

8⌧1.9⌧2.  SemiMatch⌧1 U
�
 Extend⌧1,⌧2

^
V

p2AP
(ptop⌧2

$ pbot⌧2
)
�

 SemiMatch⌧1 ,
h V
p2AP

(ptop⌧1
$ pbot⌧1

)
i
U (#top⌧1

�#bot⌧1
)

'Extend⌧1,⌧2
,

h V
p2AP

�
(ptop⌧1

$ ptop⌧2
) ^ (pbot⌧1 $ pbot⌧2

)
�i

U
�
(#top⌧1

_#bot⌧1
) ^ (¬#top⌧2

^ ¬#bot⌧2
)
�

The expected reward E(sk, ak) follows the classic Bellman formulation, combining immediate reward
and future reward based on some discount factor � (see Appendix B for details). Intuitively, E(sk, ak)
quantifies the long-term utility of taking action ak at state sk. Finally, for any arbitrary state s and
action a, the Bellman Equation then defines the Q-value recursively for each (s, a) 2 S ⇥A, denoted
as QNN (s, a):

QNN (s, a) ,
X

s02S

P(s, a, s 0)


R(s, a) + �

X

a02A

NN (a 0 | s 0) E(s 0, a 0)

�
,

where NN (a 0 | s 0) indicates that NN takes action a 0 on state s 0. Consequently, the optimal
action-value function for each (s, a) is:

QNN?

(s, a) , max
NN

QNN (s, a) (3)

Intuitively, QNN?

(s, a) captures the maximum expected reward achievable from a state s by taking
action a . We remark that, our framework samples all paths for each quantifier simultaneously.
That is, the learned neural network NN ? induces a set of n functions {NN ?

1, . . . ,NN ?
n}, where

n = |Vars(')|, and for all 1  `  n, NN ?
` maps a state to an optimal actions for a path ⇣`.

Constructing Policies. Based on the learned NN ?, we now construct the tuple of policies h⇡?
i ii2Q9

and h⇡?
j ij2Q8 that solves (2) for each k-step ranging over the sample size as follows.
• For each j 2 Q8, we inductively construct the policies:

⇡
?
j (⇣j [0:k]) , NN ?

j (sk)

• For each i 2 Q9, we construct a Skolem witness as follows:

⇡
?
i (⇣i[0:k]) , NN ?

i

⇣
fi
�
Tr(⇣i1 [0:k]), . . . ,Tr(⇣i|Q8i |[0:k]

)
�⌘

That is, the optimal policy for a finite prefix ⇣i with i 2 Q9 depends on the optimal actions taken along
the preceding universal paths ⇣i1 , . . . , ⇣i|Q8i |

, illustrating how our framework captures the dependency
of an existential path on the universally quantified ones. To this end, from the learned neural network
NN ?, we succesfully derive two tuples h⇡?

i ii2Q9 and h⇡?
j ij2Q8 for Equation (2).

Theorem 2 Given an MDP M and a HyperLTL formula ', the optimal neural network
function NN ? derives a tuple of Skolem function witnesses hfiii2Q9 and a tuple of optimal
policies h⇡?

j ij2Q8 that optimize the satisfaction of Skolem(').

Theorem 2 gives the premise of Theorem 1, which, in turn, solves the original problem stated
in Section 3 (detailed proof in Appendix A).

6 Implementation and Experiments
HYPRL is fully implemented (see Figure 4). Given a HyperLTL formula ' with n quantifiers, HYPRL
first constructs its Skolemized form Skolem('), as prescribed in Section 5.1. Next, at each step

8

Case Studies & Results

Take aways!

• Hyperproperties naturally express both objectives and relational 
constraints in multi-agent RL.

• HypRL automatically converts any HyperLTL specification into 
a reward function.

• HypRL consistently outperforms baseline reward designs.

Post Correspondence Problem (PCP)

200 400 600 800 1,000

0

50

100

150

200

250

300

350

Episodes

#
of

su
cc

es
sf

ul
m

at
ch

DQN+HYPRL (k = 5)
DQN+HYPRL (k = 6)

DQN (k = 5)
DQN (k = 6)

Figure 1: PCP results, avg. and std. error of total matches, 10 runs.

References

1

HypRL achieves higher 
successful match …

…compared to DQN 

Wildfire Scenario

Method Epi.
P P

/steps Method Epi.
P P

/steps

PPO 500 4.31±1.2 0.17±0.04 DQN 500 1.08±0.2 0.05±0.00
PPO + HYPRL 500 22.93±2.2 0.91±0.08 DQN + HYPRL 500 4.12±1.4 0.14±0.05

PPO 1000 3.22±0.8 0.12±0.03 DQN 1000 1.45±0.2 0.02±0.00
PPO + HYPRL 1000 23.97±2.2 1.12±0.08 DQN + HYPRL 1000 4.43±0.8 0.21±0.03

Size Method Dist Steps O1 Steps O2

32
PPO 2.5±0.01 33.43±4.1 787.03±31.8
PPO + HYPRL 2.30±0.03 18.940±1.1 143.550±1.1

52
PPO 4.2±0.01 62.7±9.7 S/B
PPO + HYPRL 2.1±0.05 59.50±14.3 8057.5±121.4

82
PPO 11.2±0.03 16801.8±2144.0 S/B
PPO + HYPRL 6.94±0.07 4149.6±1743.1 386.2±80.5

102
PPO 10.9±0.01 S/B 29023.6±976.4
PPO + HYPRL 5.3±0.10 21272.8±3579.0 570.3±52.2

References

1

HypRL achieves all objectives while obeying 
relational constraints in fewer steps compared to PPO.

Deep Sea Treasure

Method Epi.
P P

/steps Method Epi.
P P

/steps

PPO 500 4.31±1.2 0.17±0.04 DQN 500 1.08±0.2 0.05±0.00
PPO + HYPRL 500 22.93±2.2 0.91±0.08 DQN + HYPRL 500 4.12±1.4 0.14±0.05

PPO 1000 3.22±0.8 0.12±0.03 DQN 1000 1.45±0.2 0.02±0.00
PPO + HYPRL 1000 23.97±2.2 1.12±0.08 DQN + HYPRL 1000 4.43±0.8 0.21±0.03

Size Method Dist Steps O1 Steps O2

32
PPO 2.5±0.01 33.43±4.1 787.03±31.8
PPO + HYPRL 2.30±0.03 18.940±1.1 143.550±1.1

52
PPO 4.2±0.01 62.7±9.7 S/B
PPO + HYPRL 2.1±0.05 59.50±14.3 8057.5±121.4

82
PPO 11.2±0.03 16801.8±2144.0 S/B
PPO + HYPRL 6.94±0.07 4149.6±1743.1 386.2±80.5

102
PPO 10.9±0.01 S/B 29023.6±976.4
PPO + HYPRL 5.3±0.10 21272.8±3579.0 570.3±52.2

References

1

HypRL finds more treasures in less steps, 
compared to PPO.

References
Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk Topcu, and Lu Feng.

Safe multi-agent reinforcement learning via shielding. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, page 483–491, Richland,

SC, 2021. International Foundation for Autonomous Agents and Multiagent Systems. ISBN

9781450383073.

CQ CQ + Shield ElSayed-Aly et al. (2021) CQ + HYPRL

Maps No. Agents Steps Collisions Steps Collisions Steps Collisions

ISR

2

27.95±7.4 0.19±0.1 17.40±2.2 0.00±0.0 7.58±0.3 0.25±0.2
Pentagon 36.46±7.7 0.28±0.1 75.20±12.6 0.00±0.0 11.90±4.6 0.53±0.5
SUNY 11.99±0.5 0.01±0.0 11.50±0.3 0.00±0.0 12.48±0.6 0.00±0.0
MIT 41.28±8.5 0.20±0.1 33.46±3.4 0.00±0.0 23.20±0.5 0.00±0.0

ISR

3

98.79±0.8 12.68±3.8 S/B 0.00±0.0 74.18±5.1 7.78±1.0

Pentagon 97.15±2.4 16.46±7.2 S/B 0.00±0.0 78.82±1.7 10.92±1.4

SUNY 84.89±7.9 0.63±0.2 82.35±4.1 0.00±0.0 44.95±8.3 0.71±0.4

MIT 96.96±1.8 2.83±1.3 S/B 0.00±0.0 71.53±7.7 1.58±0.7

1

Safe RL

100 200

50
100
150

Episodes (ISR)

T
o
ta

l
R

e
a
c
h

100 200

50
100
150

Episodes (PENTAGON)

100 200

50
100
150

Episodes (SUNY)

150 300

50
100
150
200

Episodes (MIT)

100 200
0

5

10

Episodes (ISR)

C
o
ll

is
io

n
s

100 200
0

5

10

Episodes (PENTAGON)

100 200
0

5

10

Episodes (SUNY)

150 300
0

5

10

Episodes (MIT)

References

1

HypRL achieves goal in less steps while maintaining low 
collision rate compared to CQ-learning and Shielding.

Environment

Robustness 
Function

Agents

Optimal Policies 
Samples

MDP
Next episode&

Rewards

Sk
ol
em

(𝝋
) Sequence

of States

Objectives & 
Constraints

(Hyperproperty φ)

We investigate 4 popular RL benchmarks and compared with 
DQN, PPO, CQ-learning, and Shielding.

  “Is the distance between FF and Med always less than 3 cells?”

a b c f …

a d g h …

Example:


