Research Question

Multi-Objective Multi-Agent

How to shape

Motivating Example: A wildfire scenario

A control policy with reward function R1
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An control policy with reward function R2
0/. ‘ R2(Extinguish fire)= +10
g & o . ( R2(Rescue victim)= +50
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Specifications as Hyperproperties

characterize requirements over sets of execution
traces, allowing the specification of behaviors of multi-agent.

Example:

“Is the distance between FF and always less than 3 cells?”
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* We use hyperproperties, expressed in the temporal logic
to achieve for multi-agent w.r.t multi-

objective and relational constraints.

The HyperLTL specification for the wildfire scenario:
¥ Rescue 2 \V/Tl -372-(¢fire A wsave A deist A ¢safe)

(Extinguish ire) O : e 2 (i) AO(/ 1) AO(0r,)

(Rescue victim) Oz : Ysave = (G ) A (fry)
(Ourofrange) C1 : gt = [(|Location., — Location.,| < 3)
(MED infire) C2: VYsate = (Tirg U iry ) A (7o U [ 1) A (mry U €7y)
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Problem Statement

Given an MDP M with unknown transitions and a HyperLTL formula ¢ of the form
Q171....Q,7y. ¢, our goal is to identify a tuple of n policies (77, ..., n ), such that:

€ |arg max[P[(Traces(ZTi ~ D)) E gp}
L (7)) lie{1,...,n}

<7T;(>z’€{1,...,n

Our Solutions to the Main Challenges

to resolve in a HyperLTL formula.

(1) We apply

Skolem(gp) — Elfz (7'7;1, “ . 77.7;|Q\.V/|) . \V/Tj. Skolem(w)
—_— =~
for each 1€ Q- for each 7€QY

(2) We define by min-max to

p(Tr(Cler)), ) = Pmin if Tr(Ce...7) = e and p(Tr(Ce:ry), ¥) otherwise.

p(__r(CZE:k: )7 true) —  Pmax

p(Tr(Ceny) f(L(se) < ¢)) = ¢ —f(L(se))

p(Tr(Cpeky)s ) = —p(Tr(Cen)), ¥)

p(Tr(Cen)), OY) p(Tr(Cles1:k))- ) if (k> £)

p(__r(CEk)a ¢) — zénﬁlrl]c)p(__r( zk)vw)

p(Tr(Gea), O ) = max p(Tr(Gin ¥

P(nr(Cje:kj)a% A\ ¢2) — nﬁin(p(Tr(C[g k])awl (Tr(C ) ¢2))

p(Tr(Cowy)s 1 V ab2) = max(p(Tr({er), ¥ ) (Tr(C[e k) Y

p(Tr(Cew) atlv2) = max (min(p(Tr(Gn), v2). ng)p(Tr IR
(3) We to handle among multi-agent.

» Foreach j € Q, W;(Cj[o;k]) = NN (sk)

» Foreachi € Q°, W:(Ci[o k]) S NN (fi (Tr(Cil[O:k])7 -- (CZIQV )))
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Case Studies & Results

We 1nvestigate and compared with

DQON, PPO, CQ-learning, and Shielding.

Post Correspondence Problem (PCP)
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Episodes
0 o achieves all objectives while obeying
ﬁ Wildfire Scenario relational constraints compared to PPO.
Size Method Dist Steps O Steps Oo
22 PPO 2.540.01  33.43+4.1 787.03431.8
PPO + HYPRL 2.30+0.03 18.940-+1.1 143.550+1.1
- PPO 4240.01  62.7+9.7 S/B
PPO + HYPRL 2.1+0.05 59.50+14.3 8057.5+121.4
Q2 PPO 11.2+£0.03 16801.8£2144.0 S/B
PPO + HYPRL 6.94+0.07 4149.61+-1743.1 386.2+80.5
102 PPO 10.9£0.01 S/B 29023.61+976.4

21272.8+3579.0 570.3£52.2

PPO + HYPRL 5.3+0.10

0o £h finds n
000) Deep Sea Treasure compared to PPO.
Method Epi. ) = Y =/steps Method Epi. ) = Y =/ steps
PPO 500 4.314+1.2 0.17£0.04 DQN 500 1.084+0.2  0.05+£0.00
PPO + HYPRL 500 22.93+2.2 0.914+0.08 DQN+ HYPRL 500 4.12+1.4  0.14+0.05
PPO 1000 3.22+0.8  0.12£0.03 DQN 1000 1.454+0.2  0.02+£0.00
PPO + HYPRL 1000 23.97+2.2 1.124+0.08 DQN+ HYPRL 1000 4.43+0.8  0.21£0.03

Total Reach

Collisions

?-4‘ achieves goal in less steps while maintaining low
- collision rate compared to CQ-learning and Shielding.
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Episodes (ISR) Episodes (PENTAGON) Episodes (SUNY) Episodes (MIT)

CQ CQ + Shield risayed-Aly et al. (2021) CQ + HYpRL
Maps No. Agents Steps Collisions Steps Collisions Steps Collisions
ISR 27.95+£7.4 0.1940.1 17.40+2.2 0.00+0.0 7.58+0.3  0.2540.2
Pentagon ) 36.46+7.7 0.2840.1  75.204+12.6 0.004-0.0 11.90+4.6 0.53+0.5
SUNY 11.99+£0.5 0.01+0.0  11.5040.3 0.004-0.0 12.48+0.6  0.00+0.0
MIT 41.28+£8.5 0.20+0.1  33.464+3.4 0.004+-0.0 23.20+0.5 0.0040.0
ISR 98.79+0.8 12.684+3.8 S/B 0.00+0.0 74.18+5.1  7.78%+1.0
Pentagon 3 97.1542.4 16.4647.2 S/B 0.00+0.0 78.82+1.7 10.92+1.4
SUNY 84.89+7.9 0.63+0.2  82.3544.1 0.00+0.0 44.95+8.3 0.71+04
MIT 96.96+1.8 2.83+1.3 S/B 0.00+0.0 71.53+7.7  1.58%0.7

Take aways!

naturally express both objectives and relational
constraints 1n multi-agent RL.
automatically converts any HyperLTL specification into
a reward function.

consistently outperforms baseline reward designs.



